Published in

EMBO Press, EMBO Reports, 6(9), p. 548-554, 2008

DOI: 10.1038/embor.2008.49

Links

Tools

Export citation

Search in Google Scholar

Assembly of the three small Tim proteins precedes docking to the mitochondrial carrier translocase

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The mitochondrial intermembrane space contains a family of small Tim proteins that function as essential chaperones for protein import. The soluble Tim9–Tim10 complex transfers hydrophobic precursor proteins through the aqueous intermembrane space to the carrier translocase of the inner membrane (TIM22 complex). Tim12, a peripheral membrane subunit of the TIM22 complex, is thought to recruit a portion of Tim9–Tim10 to the inner membrane. It is not known, however, how Tim12 is assembled. We have identified a new intermediate in the biogenesis pathway of Tim12. A soluble form of Tim12 first assembles with Tim9 and Tim10 to form a Tim12-core complex. Tim12-core then docks onto the membrane-integrated subunits of the TIM22 complex to form the holo-translocase. Thus, the function of Tim12 in linking soluble and membrane-integrated subunits of the import machinery involves a sequential assembly mechanism of the translocase through a soluble intermediate complex of the three essential small Tim proteins.