Dissemin is shutting down on January 1st, 2025

Published in

Cambridge University Press, Mineralogical Magazine, 6(72), p. 1147-1161, 2008

DOI: 10.1180/minmag.2008.072.6.1147

Links

Tools

Export citation

Search in Google Scholar

REE partitioning between apatite and melt in a peralkaline volcanic suite, Kenya Rift Valley

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractElectron microprobe analyses are presented for fluorapatite phenocrysts from a benmoreite-peralkaline rhyolite volcanic suite from the Kenya Rift Valley. The rocks have previously been well characterized petrographically and their crystallization conditions are reasonably well known. The REE contents in the M site increase towards the rhyolites, with a maximum britholite component of ~35 mol.%. Chondrite-normalized REE patterns are rather flat between La and Sm and then decrease towards Yb. Sodium and Fe occupy up to 1% and 4%, respectively, of the M site. The major coupled substitution is REE3+ + Si4+ ↔ Ca2+ + P5+. The substitution REE3+ + Na+ ↔ 2Ca2+has been of minor importance. The relatively large Fe contents were perhaps facilitated by the low fO2conditions of crystallization. Zoning is ubiquitous and resulted from both fractional crystallization and magma mixing. Apatites in some rhyolites are relatively Y-depleted, perhaps reflecting crystallization from melts which had precipitated zircon. Mineral/glass (melt) ratios for two rhyolites are unusually high, with maxima at Sm (762, 1123).