Dissemin is shutting down on January 1st, 2025

Published in

SAGE Publications, Neuroscientist, 4(12), p. 305-316, 2006

DOI: 10.1177/1073858405285208

Links

Tools

Export citation

Search in Google Scholar

Death Ligands and Autoimmune Demyelination

Journal article published in 2006 by Orhan Aktas, Timour Prozorovski, Frauke Zipp ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Death ligands induce apoptosis, which is a cell suicide program leading mainly to selective elimination of an organism's useless cells. Importantly, the dying cell is an active participant in its own demise (“cellular suicide”). Under physiological conditions, apoptosis is most often found during normal cell turnover and tissue homeostasis, embryogenesis, induction and maintenance of immune tolerance, development of the nervous system, and endocrine-dependent tissue atrophy. However, apoptotic processes have also been suggested to contribute to the pathology of the autoimmune demyelinating disease multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis. Here, apoptosis plays a double role. On one hand, impaired apoptosis may result in increased numbers or persistence of activated myelinspecific T cells. On the other hand, local tissue damage involves apoptosis of oligodendrocytes and neurons, leading to the clinical symptoms. In this article, an overview is given of the current knowledge of the roles of apoptosis-mediating and immune regulatory death ligands of the tumor necrosis factor (TNF) family (TNF, lymphotoxin-beta, OX40L [CD134L], CD154 [CD40L], CD95L, CD70 [CD27L], CD153 [CD30L], 4-1BBL [CD137L], TRAIL, TWEAK, BAFF, GITRL) in the pathogenesis of MS and of their implications for related therapeutic strategies.