Published in

BioMed Central, BMC Proceedings, S1(1), 2007

DOI: 10.1186/1753-6561-1-s1-s161

Links

Tools

Export citation

Search in Google Scholar

Handling linkage disequilibrium in linkage analysis using dense single-nucleotide polymorphisms

Journal article published in 2007 by Kelly Cho, Qiong Yang ORCID, Josée Dupuis
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The presence of linkage disequilibrium violates the underlying assumption of linkage equilibrium in most traditional multipoint linkage approaches. Studies have shown that such violation leads to bias in qualitative trait linkage analysis when parental genotypes are unavailable. Appropriate handling of marker linkage disequilibrium can avoid such false positive evidence. Using the rheumatoid arthritis simulated data from Genetic Analysis Workshop 15, we examined and compared the following three approaches to handle linkage disequilibrium among dense markers in both qualitative and quantitative trait linkage analyses: a simple algorithm; SNPLINK, methods for marker selection; and MERLIN-LD, a method for modeling linkage disequilibrium by creating marker clusters. In analysis ignoring linkage disequilibrium between markers, we observed LOD score inflation only in the affected sib-pair linkage analysis without parental genotypes; no such inflation was present in the quantitative trait locus linkage analysis with severity as our phenotype with or without parental genotypes. Using methods to model or adjust for linkage disequilibrium, we found a substantial reduction of inflation of LOD score in affected sib-pair linkage analysis. Greater LOD score reduction was observed by decreasing the amount of tolerable linkage disequilibrium among markers selected or marker clusters using MERLIN-LD; the latter approach showed most reduction. SNPLINK performed better with selected markers based on the D' measure of linkage disequilibrium as opposed to the r2 measure and outperformed the simple algorithm. Our findings reiterate the necessity of properly handling dense markers in linkage analysis, especially when parental genotypes are unavailable.