Dissemin is shutting down on January 1st, 2025

Published in

Springer Nature [academic journals on nature.com], Heredity, 5(108), p. 480-489, 2011

DOI: 10.1038/hdy.2011.119

Links

Tools

Export citation

Search in Google Scholar

Parallel signatures of sequence evolution among hearing genes in echolocating mammals: an emerging model of genetic convergence

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Recent findings of sequence convergence in the Prestin gene among some bats and cetaceans suggest that parallel adaptations for high-frequency hearing have taken place during the evolution of echolocation. To determine if this gene is an exception, or instead similar processes have occurred in other hearing genes, we have examined Tmc1 and Pjvk, both of which are associated with non-syndromic hearing loss in mammals. These genes were amplified and sequenced from a number of mammalian species, including echolocating and non-echolocating bats and whales, and were analysed together with published sequences. Sections of both genes showed phylogenetic signals that conflicted with accepted species relationships, with coding regions uniting laryngeal echolocating bats in a monophyletic clade. Bayesian estimates of posterior probabilities of convergent and divergent substitutions provided more direct evidence of sequence convergence between the two groups of laryngeal echolocating bats as well as between echolocating bats and dolphins. We found strong evidence of positive selection acting on some echolocating bat species and echolocating cetaceans, contrasting with purifying selection on non-echolocating bats. Signatures of sequence convergence and molecular adaptation in two additional hearing genes suggest that the acquisition of high-frequency hearing has involved multiple loci.