Published in

American Meteorological Society, Journal of Physical Oceanography, 11(41), p. 2242-2258, 2011

DOI: 10.1175/jpo-d-11-021.1

Links

Tools

Export citation

Search in Google Scholar

A Dynamically Consistent Closure for Zonally Averaged Ocean Models

Journal article published in 2011 by Nils Brüggemann ORCID, Carsten Eden, Dirk Olbers
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract Simple idealized layered models and primitive equation models show that the meridional gradient of the zonally averaged pressure has no direct relation with the meridional flow. This demonstrates a contradiction in an often-used parameterization in zonally averaged models. The failure of this parameterization reflects the inconsistency between the model of Stommel and Arons and the box model of Stommel, as previously pointed out by Straub. A new closure is proposed. The ocean is divided in two dynamically different regimes: a narrow western boundary layer and an interior ocean; zonally averaged quantities over these regions are considered. In the averaged equations three unknowns appear: the interior zonal pressure difference Δpi, the zonal pressure difference Δpb of the boundary layer, and the zonal velocity uδ at the interface between the two regions. Here Δpi is parameterized using a frictionless vorticity balance, Δpb by the difference of the mean pressure in the interior and western boundary, and uδ by the mean zonal velocity of the western boundary layer. Zonally resolved models, a layer model, and a primitive equation model validate the new parameterization by comparing with the respective zonally averaged counterparts. It turns out that the zonally averaged models reproduce well the buoyancy distribution and the meridional flow in the zonally resolved model versions with respect to the mean and time changes.