Published in

Cambridge University Press, Journal of Glaciology, 162(48), p. 369-385

DOI: 10.3189/172756502781831322

Links

Tools

Export citation

Search in Google Scholar

Mechanisms of fast flow in Jakobshavn Isbræ, West Greenland: Part III. Measurements of ice deformation, temperature and cross-borehole conductivity in boreholes to the bedrock

Journal article published in 2002 by Martin Lüthi ORCID, Martin Funk, Almut Iken, Shivaprasad Gogineni, Martin Truffer
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractAt a site on the ice sheet adjacent to the Jakobshavn ice stream in West Greenland, ice deformation rates and temperatures have been measured in boreholes to the bedrock at 830 m depth. Enhanced deformation rates were recorded just below the Holocene–Wisconsin transition at 680 m depth. A 31 m layer of temperate ice and the temperature minimum of −22°C at 520 m depth were detected. The good agreement of these data with results of a two-dimensional thermomechanically coupled flow model implies that the model input is adequate. Discrepancies between modelled and measured temperature profiles on a flowline at the ice-stream centre have been attributed to effects not accounted for by the model. We have suggested that the convergent three-dimensional flow leads to a vertical extension of the basal ice entering the stream. A thick basal layer of temperate and Wisconsin ice would explain the fast flow of this ice stream. As a test of this hypothesis, the new core-borehole conductivity (CBC) method has been used to compare conductivity sequences from the ice stream to those of the adjacent ice sheet. The correlation thus inferred suggests that the lowest 270 m of the ice sheet correspond to the lowermost 1700 m of the stream, and, consequently, that the lower part of the ice stream has experienced a very large vertical extension.