Published in

American Heart Association, Circulation Research, 8(98), p. 1002-1013, 2006

DOI: 10.1161/01.res.0000218272.18669.6e

Links

Tools

Export citation

Search in Google Scholar

Stem Cells as a Source of Regenerative Cardiomyocytes

Journal article published in 2006 by Keiichi Fukuda, Shinsuke Yuasa ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The realization of regenerative cardiac medicine depends on the availability of cardiomyocytes in sufficient numbers for transplantation of cardiac tissue and the accompanying blood vessels. Embryonic stem (ES) cells, bone marrow (BM) stem cells, and tissue-derived stem cells are all potential cell sources. Although ES cells are highly proliferative and suitable for mass production, an efficient protocol is yet to be established to ensure selective cardiomyocyte induction using these cells. Recent advances in developmental biology have clarified the involvement of critical factors in cardiomyocyte differentiation, including bone morphogenic protein and Wnt signaling proteins, and such factors have the potential to improve the efficiency of stem cell induction. Initial studies of the intracoronary administration of BM mononuclear cells after myocardial infarction has yielded promising results; however, intensive investigation of the underlying molecular mechanisms at play as well as double-blinded clinical trials will be necessary to establish the extent of both migration of the BM stem cells into the damaged cardiac tissue and their differentiation into cardiomyocytes. Several types of cardiac tissue stem cells have also been reported, but an accurate and extensive comparison of these cells with regard to their characteristics and multipotency remains to be done. An integrative study involving developmental biology, stem cell biology, and tissue engineering is required to achieve the full potential of cardiac regeneration.