Published in

Karger Publishers, Nephron Experimental Nephrology, 1(117), p. e9-e20

DOI: 10.1159/000319652

Links

Tools

Export citation

Search in Google Scholar

Involvement of Connective Tissue Growth Factor in Human and Experimental Hypertensive Nephrosclerosis

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

<i>Background/Aims:</i> Connective tissue growth factor (CTGF; CCN2) has been implicated as a marker and mediator of fibrosis in human and experimental renal disease. <i>Methods:</i> We performed a comparative analysis of CTGF expression in hypertensive patients with and without nephrosclerosis, and in uninephrectomized and sham-operated spontaneously hypertensive rats (UNX-SHR and 2K-SHR). <i>Results:</i> Urinary and plasma CTGF were elevated in patients with hypertensive nephrosclerosis, and increased renal CTGF expression was mainly localized in podocytes. Accordingly, elevation of urinary, plasma, and tissue CTGF in UNX-SHR coincided and correlated with proteinuria, glomerulosclerosis, and tubulointerstitial fibrosis. Thirty-two weeks after uninephrectomy, mean glomerular CTGF mRNA expression was increased 1.3-fold over baseline, mainly due to 1.7-fold higher expression in glomeruli undergoing sclerosis. In parallel, tubulointerstitial CTGF and α-smooth muscle actin were upregulated in UNX-SHR. CTGF was increased in the media of arcuate and interlobar arteries, while arterioles remained negative. <i>Conclusions:</i> Glomerulosclerosis, tubulointerstitial fibrosis, and arterial media hypertrophy lesions of hypertensive nephrosclerosis are all characterized by increased CTGF tissue expression, which is associated with a concomitant increase in CTGF in blood and urine. These findings identify CTGF as a promising biomarker for progression of hypertensive nephrosclerosis, and as a likely key factor in the pathogenesis of this disease.