Published in

Public Library of Science, PLoS ONE, 7(8), p. e69714, 2013

DOI: 10.1371/journal.pone.0069714

Links

Tools

Export citation

Search in Google Scholar

Differential Disruption of EWS-FLI1 Binding by DNA-Binding Agents

Journal article published in 2013 by Changmin Chen, Diane R. Wonsey, Madeleine E. Lemieux ORCID, Andrew L. Kung ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Fusion of the EWS gene to FLI1 produces a fusion oncoprotein that drives an aberrant gene expression program responsible for the development of Ewing sarcoma. We used a homogenous proximity assay to screen for compounds that disrupt the binding of EWS-FLI1 to its cognate DNA targets. A number of DNA-binding chemotherapeutic agents were found to non-specifically disrupt protein binding to DNA. In contrast, actinomycin D was found to preferentially disrupt EWS-FLI1 binding by comparison to p53 binding to their respective cognate DNA targets in vitro. In cell-based assays, low concentrations of actinomycin D preferentially blocked EWS-FLI1 binding to chromatin, and disrupted EWS-FLI1-mediated gene expression. Higher concentrations of actinomycin D globally repressed transcription. These results demonstrate that actinomycin D preferentially disrupts EWS-FLI1 binding to DNA at selected concentrations. Although the window between this preferential effect and global suppression is too narrow to exploit in a therapeutic manner, these results suggest that base-preferences may be exploited to find DNA-binding compounds that preferentially disrupt subclasses of transcription factors.