Published in

American Association for Cancer Research, Molecular Cancer Research, 1(10), p. 3-10, 2012

DOI: 10.1158/1541-7786.mcr-11-0272

Links

Tools

Export citation

Search in Google Scholar

MiR-126 Acts as a Tumor Suppressor in Pancreatic Cancer Cells via the Regulation of ADAM9

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract The epithelial-mesenchymal transition (EMT) is a critical step for pancreatic cancer cells as an entry of metastatic disease. Wide variety of cytokines and signaling pathways are involved in this complex process while the entire picture is still cryptic. Recently, miRNA was found to regulate cellular function including EMT by targeting multiple mRNAs. We conducted comprehensive analysis of miRNA expression profiles in invasive ductal adenocarcinoma (IDA), intraductal papillary mucinous adenoma, intraductal papillary mucinous carcinoma, and human pancreatic cancer cell line to elucidate essential miRNAs which regulate invasive growth of pancreatic cancer cells. Along with higher expression of miR-21 which has been shown to be highly expressed in IDA, reduced expression of miR-126 in IDA and pancreatic cancer cell line was detected. The miR-126 was found to target ADAM9 (disintegrin and metalloproteinase domain-containing protein 9) which is highly expressed in pancreatic cancer. The direct interaction between miR-126 and ADAM9 mRNA was confirmed by 3′ untranslated region assay. Reexpression of miR-126 and siRNA-based knockdown of ADAM9 in pancreatic cancer cells resulted in reduced cellular migration, invasion, and induction of epithelial marker E-cadherin. We showed for the first time that the miR-126/ADAM9 axis plays essential role in the inhibition of invasive growth of pancreatic cancer cells. Mol Cancer Res; 10(1); 3–10. ©2011 AACR.