Published in

American Association for Cancer Research, Molecular Cancer Therapeutics, 9(7), p. 2967-2976, 2008

DOI: 10.1158/1535-7163.mct-08-0549

Links

Tools

Export citation

Search in Google Scholar

N-(4-Hydroxyphenyl)retinamide increases dihydroceramide and synergizes with dimethylsphingosine to enhance cancer cell killing

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Fenretinide [N-(4-hydroxyphenyl)retinamide (4-HPR)] is cytotoxic in many cancer cell types. Studies have shown that elevation of ceramide species plays a role in 4-HPR cytotoxicity. To determine 4-HPR activity in a multidrug-resistant cancer cell line as well as to study ceramide metabolism, MCF-7/AdrR cells (redesignated NCI/ADR-RES) were treated with 4-HPR and sphingolipids were analyzed. TLC analysis of cells radiolabeled with [3H]palmitic acid showed that 4-HPR elicited a dose-responsive increase in radioactivity migrating in the ceramide region of the chromatogram and a decrease in cell viability. Results from liquid chromatography/electrospray tandem mass spectrometry revealed large elevations in dihydroceramides (N-acylsphinganines), but not desaturated ceramides, and large increases in complex dihydrosphingolipids (dihydrosphingomyelins, monohexosyldihydroceramides), sphinganine, and sphinganine 1-phosphate. To test the hypothesis that elevation of sphinganine participates in the cytotoxicity of 4-HPR, cells were treated with the sphingosine kinase inhibitor d-erythro-N,N-dimethylsphingosine (DMS), with and without 4-HPR. After 24 h, the 4-HPR/DMS combination caused a 9-fold increase in sphinganine that was sustained through +48 hours, decreased sphinganine 1-phosphate, and increased cytotoxicity. Increased dihydrosphingolipids and sphinganine were also found in HL-60 leukemia cells and HT-29 colon cancer cells treated with 4-HPR. The 4-HPR/DMS combination elicited increased apoptosis in all three cell lines. We propose that a mechanism of 4-HPR–induced cytotoxicity involves increases in dihydrosphingolipids, and that the synergy between 4-HPR and DMS is associated with large increases in cellular sphinganine. These studies suggest that enhanced clinical efficacy of 4-HPR may be realized through regimens containing agents that modulate sphingoid base metabolism. [Mol Cancer Ther 2008;7(9):2967–76]