Published in

American Association for Cancer Research, Clinical Cancer Research, 9(18), p. 2695-2703, 2012

DOI: 10.1158/1078-0432.ccr-11-2210

American Association for Cancer Research, Clinical Cancer Research, 9(18), p. 2417-2419, 2012

DOI: 10.1158/1078-0432.ccr-12-0566

Links

Tools

Export citation

Search in Google Scholar

A comprehensive analysis of human gene expression profiles identifies stromal immunoglobulin κ C as a compatible prognostic marker in human solid tumors.

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Purpose: Although the central role of the immune system for tumor prognosis is generally accepted, a single robust marker is not yet available. Experimental Design: On the basis of receiver operating characteristic analyses, robust markers were identified from a 60-gene B cell–derived metagene and analyzed in gene expression profiles of 1,810 breast cancer; 1,056 non–small cell lung carcinoma (NSCLC); 513 colorectal; and 426 ovarian cancer patients. Protein and RNA levels were examined in paraffin-embedded tissue of 330 breast cancer patients. The cell types were identified with immunohistochemical costaining and confocal fluorescence microscopy. Results: We identified immunoglobulin κ C (IGKC) which as a single marker is similarly predictive and prognostic as the entire B-cell metagene. IGKC was consistently associated with metastasis-free survival across different molecular subtypes in node-negative breast cancer (n = 965) and predicted response to anthracycline-based neoadjuvant chemotherapy (n = 845; P < 0.001). In addition, IGKC gene expression was prognostic in NSCLC and colorectal cancer. No association was observed in ovarian cancer. IGKC protein expression was significantly associated with survival in paraffin-embedded tissues of 330 breast cancer patients. Tumor-infiltrating plasma cells were identified as the source of IGKC expression. Conclusion: Our findings provide IGKC as a novel diagnostic marker for risk stratification in human cancer and support concepts to exploit the humoral immune response for anticancer therapy. It could be validated in several independent cohorts and carried out similarly well in RNA from fresh frozen as well as from paraffin tissue and on protein level by immunostaining. Clin Cancer Res; 18(9); 2695–703. ©2012 AACR.