Published in

American Association for Cancer Research, Clinical Cancer Research, 3(13), p. 795-798, 2007

DOI: 10.1158/1078-0432.ccr-06-1758

Links

Tools

Export citation

Search in Google Scholar

Nitric Oxide and Its Gatekeeper Thrombospondin-1 in Tumor Angiogenesis

Journal article published in 2007 by David D. Roberts ORCID, Jeffery S. Isenberg, Lisa A. Ridnour, David A. Wink
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Nitric oxide (NO) plays a central role in angiogenesis as a mediator of signaling by vascular endothelial growth factor and other angiogenic factors. Low concentrations of NO produced in response to angiogenic factors stimulate angiogenesis, whereas higher concentrations typical of inflammatory responses inhibit angiogenesis. The proangiogenic activity of NO is mediated by activation of soluble guanylyl cyclase, leading to cyclic guanosine 3′,5′-monophosphate accumulation and activation of its target kinases and ion channels. The four angiogenesis inhibitors currently approved for clinical use target components of the signaling cascade upstream of NO. New research has identified components downstream of NO as the primary target of the endogenous angiogenesis inhibitor thrombospondin-1 and has shown that circulating levels of thrombospondin-1 are sufficient to limit angiogenic responses by antagonizing NO signaling. This provides new insights into the significance of the widespread loss of thrombospondin-1 expression during malignant progression. Although clinical trials suggest that blocking NO signaling can inhibit tumor angiogenesis, this approach also inactivates inhibitory signaling from thrombospondin-1. We discuss the implications of the balance between these pathways for applying thrombospondin-1 mimetics and redox modifiers as cancer therapeutics.