Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Wiley Interdisciplinary Reviews: Developmental Biology, 2(2), p. 213-227

DOI: 10.1002/wdev.71

Links

Tools

Export citation

Search in Google Scholar

Neural tube defects – disorders of neurulation and related embryonic processes

Journal article published in 2012 by Andrew J. Copp, Nicholas D. E. Greene ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractNeural tube defects (NTDs) are severe congenital malformations affecting 1 in every 1000 pregnancies. ‘Open’ NTDs result from failure of primary neurulation as seen in anencephaly, myelomeningocele (open spina bifida), and craniorachischisis. Degeneration of the persistently open neural tube in utero leads to loss of neurological function below the lesion level. ‘Closed’ NTDs are skin‐covered disorders of spinal cord structure, ranging from asymptomatic spina bifida occulta to severe spinal cord tethering, and usually traceable to disruption of secondary neurulation. ‘Herniation’ NTDs are those in which meninges, with or without brain or spinal cord tissue, become exteriorized through a pathological opening in the skull or vertebral column (e.g., encephalocele and meningocele). NTDs have multifactorial etiology, with genes and environmental factors interacting to determine individual risk of malformation. While over 200 mutant genes cause open NTDs in mice, much less is known about the genetic causation of human NTDs. Recent evidence has implicated genes of the planar cell polarity signaling pathway in a proportion of cases. The embryonic development of NTDs is complex, with diverse cellular and molecular mechanisms operating at different levels of the body axis. Molecular regulatory events include the bone morphogenetic protein and Sonic hedgehog pathways which have been implicated in control of neural plate bending. Primary prevention of NTDs has been implemented clinically following the demonstration that folic acid (FA), when taken as a periconceptional supplement, can prevent many cases. Not all NTDs respond to FA, however, and adjunct therapies are required for prevention of this FA‐resistant category. WIREs Dev Biol 2013, 2:213–227. doi: 10.1002/wdev.71This article is categorized under: Signaling Pathways > Global Signaling Mechanisms Early Embryonic Development > Gastrulation and Neurulation Birth Defects > Craniofacial and Nervous System Anomalies