Published in

American Physiological Society, Journal of Neurophysiology, 1(90), p. 515-520, 2003

DOI: 10.1152/jn.00843.2002

Links

Tools

Export citation

Search in Google Scholar

TRPM8 mRNA Is Expressed in a Subset of Cold-Responsive Trigeminal Neurons From Rat

Journal article published in 2003 by Michael S. Gold ORCID, Michele L. Nealen, Paul D. Thut, Michael J. Caterina
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Recent electrophysiological studies of cultured dorsal root and trigeminal ganglion neurons have suggested that multiple ionic mechanisms underlie the peripheral detection of cold temperatures. Several candidate “cold receptors,” all of them ion channel proteins, have been implicated in this process. One of the most promising candidates is TRPM8, a nonselective cationic channel expressed in a subpopulation of sensory neurons that is activated both by decreases in temperature and the cooling compound menthol. However, evidence for the expression of TRPM8 in functionally defined cold-sensitive neurons has been lacking. Here, we combine fluorometric calcium imaging of cultured rat trigeminal neurons with single-cell RT-PCR to demonstrate that there are distinct subpopulations of cold responsive neurons and that TRPM8 likely contributes to cold transduction in one of them. TRPM8 is preferentially expressed within a subset of rapidly responsive, low-threshold (approximately 30°C), cold-sensitive neurons. A distinct class of slowly responsive cold-sensitive neurons that is activated at lower temperatures (approximately 20°C) generally lacks detectable TRPM8 mRNA. Together with previous findings, our data support the notion that cold responsive neurons are functionally heterogeneous.