Published in

American Physiological Society, Journal of Neurophysiology, 2(95), p. 1213-1220, 2006

DOI: 10.1152/jn.00680.2005

Links

Tools

Export citation

Search in Google Scholar

Epileptogenesis Is Associated With Enhanced Glutamatergic Transmission in the Perforant Path

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The perforant path provides the main excitatory input into the hippocampus and has been proposed to play a critical role in the generation of temporal lobe seizures. It has been hypothesized that changes in glutamatergic transmission in this pathway promote the epileptogenic process and seizure generation. We therefore asked whether epileptogenesis is associated with enhanced glutamatergic transmission from the perforant path to dentate granule cells. We used a rat model of temporal lobe epilepsy in which spontaneous seizures occur after an episode of pilocarpine-induced status epilepticus. Whole cell patch-clamp recordings were obtained from dentate granule cells in hippocampal slices from control and epileptic animals 3 wk after pilocarpine-induced status epilepticus. The paired pulse ratio of perforant path-evoked AMPA receptor-mediated excitatory postsynaptic currents (EPSCs) was reduced in tissue obtained from epileptic rats. This is consistent with an increase in release probability. N-methyl-d-aspartate (NMDA) receptor-mediated EPSCs were also prolonged. This prolongation could not be accounted for by decreased activity of glutamate transporters or by a change in NMDA receptor subunit composition in dentate granule cells, implying a change in NMDA receptor kinetics. This change in NMDA receptor kinetics was associated with the emergence of significant synaptic cross-talk, detected as a use-dependent block of receptors activated by medial perforant path synapses after lateral perforant path stimulation in MK-801. Enhanced glutamatergic transmission and the emergence of cross-talk among perforant path-dentate granule cell synapses may contribute to lowering seizure threshold.