Published in

American Physiological Society, American Journal of Physiology - Renal Physiology, 6(290), p. F1391-F1397, 2006

DOI: 10.1152/ajprenal.00315.2005

Links

Tools

Export citation

Search in Google Scholar

Nitric oxide stimulates cyclooxygenase-2 in cultured cTAL cells through a p38-dependent pathway

Journal article published in 2006 by Hui-Fang Cheng, Ming-Zhi Zhang, Raymond C. Harris ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

To examine the interaction of nitric oxide (NO) and cyclooxygenase (COX-2) and the signaling pathway involved, primary cultured rabbit cortical thick ascending limb (cTAL) were used. In these cells, immunoreactive COX-2 and vasodilatory prostaglandins were increased by a NO donor, S-nitros- N-acetylpenicillamine (SNAP; 2.5 ± 0.3-fold control, n = 6, P < 0.01). SNAP increased expression of phosphorylated p38 (pp38; 2.4 ± 0.3-fold control; n = 5; P < 0.01), which was inhibited by the p38 inhibitor SB-203580 (1.3 ± 0.1-fold control, n = 5, P < 0.01). SB-203580 inhibited SNAP-induced COX-2 expression [1.4 ± 0.2-fold control, n = 6, not significant (NS) vs. control] and levels of PGE2significantly. In cTAL cells transfected with a luciferase reporter driven by the wild-type mouse COX-2 promoter, SNAP stimulated luciferase activity, which was reversed by SB-203580 (control vs. SNAP vs. SNAP + SB-203580: 1.4 ± 0.2-, 8.3 ± 1.4-, and 0.4 ± 0.1-fold control, respectively, n = 4, P < 0.01). Electrophoretic mobility shift assay indicated that SNAP stimulated nuclear factor (NF)-κB binding activity in cTAL that was also inhibited by the p38 inhibitor. SNAP was not able to stimulate a mutant COX-2 promoter construct that is not activated by NF-κB (0.9 ± 0.1, 1.2 ± 0.1, and 1.0 ± 0.2 respectively, n = 4, NS). Low chloride increased COX-2 expression (2.7 ± 0.4-fold control, n = 6, P < 0.01) and pp38 expression (2.8 ± 0.3-fold; n = 5, P < 0.01), which were reversed by the specific NO synthase (NOS) inhibitor 7-nitroindazole. Administration of a low-salt diet increased immunoreactive COX-2 and neuronal NOS (nNOS) in the macula densa and surrounding cTAL of kidneys of wild-type mice but did not significantly elevate COX-2 expression in nNOS−/−mice. In summary, these studies indicate that, in cTAL, NO can increase COX-2 expression in cTAL and macula densa through p38-dependent signaling pathways via activation of NF-κB.