Published in

American Physiological Society, American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 2(303), p. R186-R198, 2012

DOI: 10.1152/ajpregu.00572.2011

Links

Tools

Export citation

Search in Google Scholar

Treatment with the vascular disrupting agent combretastatin is associated with impaired AQP2 trafficking and increased urine output

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Combretastatin A-4 disodium phosphate (CA4P) is a vascular disrupting agent known to mediate its effects primarily on tumor blood vessels. CA4P has previously been shown to induce a significant increase in mean arterial blood pressure and in hemoglobin concentration in mice. In the present study, we examined whether this is associated with a general leakage of water into certain tissues or with changes in renal water handling. Munich-Wistar rats received either CA4P (30 mg/kg body wt) or saline intraperitoneally as a bolus injection. One hour later, hemoglobin concentration and mean blood pressure increased significantly. MRI showed no significant changes in tissue water content following CA4P administration. However, urine output and salt excretion increased 1 h after CA4P treatment, without changes in urinary and medullary osmolality. Aquaporin 2 (AQP2) mRNA levels in kidney inner medulla did not change 1 h after CA4P treatment, but semiquantitative confocal laser-scanning microscopy analysis demonstrated a decrease in phosphorylated AQP2 (pS256-AQP2) apical distribution within the collecting ducts of CA4P-treated rats compared with the characteristic apical localization in control rats. Furthermore, we demonstrated that CA4P cause disruption of microtubules and a weaker apical labeling of pS256-AQP2 in collecting duct principal cells within 1 h. In conclusion, our data indicate that water escapes from the vascular system after CA4P treatment, and it may take place primarily through a renal mechanism. The CA4P-mediated increase in urine output seems to be a local effect in the collecting ducts due to reduced AQP2 trafficking to the apical plasma membrane.