Published in

American Physiological Society, American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 6(299), p. R1618-R1628

DOI: 10.1152/ajpregu.00345.2010

Links

Tools

Export citation

Search in Google Scholar

Y2 and Y4 receptor signaling synergistically act on energy expenditure and physical activity

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Neuropeptide Y receptors are critical regulators of energy homeostasis and are well known for their powerful influence on feeding, but their roles in other important aspects of energy homeostasis, such as energy expenditure and their functional interactions in these processes, are largely unknown. Here we show that mice lacking both Y2 and Y4 receptors exhibited a reduction in adiposity, more prominent in intra-abdominal vs. subcutaneous fat, and an increase in lean mass as determined by dual-energy X-ray absorptiometry. These changes were more pronounced than those seen in mice with Y2 or Y4 receptor single deletion, demonstrating the important roles and synergy of Y2 and Y4 signaling in the regulation of body composition. These changes in body composition occurred without significant changes in food intake, but energy expenditure and physical activity were significantly increased in Y4−/− and particularly in Y2−/−Y4−/− but not in Y2−/− mice, suggesting a critical role of Y4 signaling and synergistic interactions with Y2 signaling in the regulation of energy expenditure and physical activity. Y2−/− and Y4−/− mice also exhibited a decrease in respiratory exchange ratio with no further synergistic decrease in Y2−/−Y4−/− mice, suggesting that Y2 and Y4 signaling each play important and independent roles in the regulation of substrate utilization. The synergy between Y2 and Y4 signaling in regulating fat mass may be related to differences in mitochondrial oxidative capacity, since Y2−/−Y4−/− but not Y2−/− or Y4−/− mice showed significant increases in muscle protein levels of peroxisome proliferator-activated receptor (PPAR)γ coactivator (PGC)-1α, and mitochondrial respiratory chain complexes I and III. Taken together, this work demonstrates the critical roles of Y2 and Y4 receptors in the regulation of body composition and energy metabolism, highlighting dual antagonism of Y2 and Y4 receptors as a potentially effective anti-obesity treatment.