Published in

American Physiological Society, American Journal of Physiology - Heart and Circulatory Physiology, 5(288), p. H2062-H2067, 2005

DOI: 10.1152/ajpheart.00777.2004

Links

Tools

Export citation

Search in Google Scholar

Myocardial oxygenation and adenosine release in isolated guinea pig hearts during changes in contractility

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Previous work from this laboratory using near-infrared optical spectroscopy of myoglobin has shown that ∼20% of the myocardium is hypoxic in buffer-perfused hearts that are perfused with fully oxygenated buffer at 37°C. The present study was undertaken to determine cardiac myoglobin saturation in buffer-perfused hearts when cardiac contractility was increased with epinephrine and decreased during cardiac arrest with KCl. Infusion of epinephrine to achieve a doubling of contractility, as measured by left ventricular maximum pressure change over time (dP/d t), resulted in a decrease in mean myoglobin saturation from 79% at baseline to 65% and a decrease in coronary venous oxygen tension from 155 mmHg at baseline to 85 mmHg. Cardiac arrest with KCl increased mean myoglobin saturation to 100% and coronary venous oxygen tension to 390 mmHg. A previously developed computer model of oxygen transport in the myocardium was used to calculate the probability distribution of intracellular oxygen tension and the hypoxic fraction of the myocardium with an oxygen tension below 0.5 mmHg. The hypoxic fraction of the myocardium was ∼15% at baseline, increased to ∼30% during epinephrine infusion, and fell to ∼0% during cardiac arrest. The coronary venous adenosine concentration changed in parallel with the hypoxic fraction of the myocardium during epinephrine and KCl. It is concluded that catecholamine stimulation of buffer-perfused hearts increases hypoxia in the myocardium and that the increase in venous adenosine concentration is a reflection of the larger hypoxic fraction of myocardium that is releasing adenosine.