Published in

Canadian Science Publishing, Canadian Journal of Forest Research, 11(36), p. 2794-2802

DOI: 10.1139/x06-160

Links

Tools

Export citation

Search in Google Scholar

Spatial dynamics of soil moisture and temperature in a black spruce boreal chronosequence

Journal article published in 2006 by Ben Bond-Lamberty ORCID, Karen M. Brown, Carol Goranson, Stith T. Gower
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This study analyzed the spatial dependencies of soil moisture and temperature in a six-stand chronosequence of boreal black spruce (Picea mariana (Mill.) BSP) stands. Spatial variability of soil temperature (TSOIL) was evaluated twice during the growing season using four transects in each stand, employing a cyclic sampling design with measurements spaced 2–92 m apart. Soil moisture (θg) was measured on one occasion. A spherical model was used to analyze the geostatistical correlation structure; θg and TSOIL at the 7- and 21-year-old stands did not exhibit stable ranges or sills. The fits with stable ranges and sills modeled the spatial patterns in the older stands reasonably well, although unexplained variability was high. Calculated ranges varied from 3 to 150 m for these stands, lengths probably related to structural characteristics influential in local-scale energy transfer. Transect-to-transect variability was significant and typically 5%–15% of the mean for TSOIL and 10%–70% for θg. TSOIL and θg were negatively correlated for most stands and depths, with TSOIL dropping 0.5–0.9 °C for every 1% rise in θg. The results reported here provide initial data to assess the spatial variability of TSOIL and θg in a variety of boreal forest stand ages.