Published in

American Society of Hematology, Blood, 13(113), p. 2945-2954, 2009

DOI: 10.1182/blood-2008-06-166082

Links

Tools

Export citation

Search in Google Scholar

SHIP prevents lipopolysaccharide from triggering an antiviral response in mice

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Gram-negative bacterial infections, unlike viral infections, do not typically protect against subsequent viral infections. This is puzzling given that lipopolysaccharide (LPS) and double-stranded (ds) RNA both activate the TIR domain–containing adaptor-inducing interferon β (TRIF) pathway and, thus, are both capable of eliciting an antiviral response by stimulating type I interferon (IFN) production. We demonstrate herein that SH2-containing inositol-5′-phosphatase (SHIP) protein levels are dramatically increased in murine macrophages via the MyD88-dependent pathway, by up-regulating autocrine-acting transforming growth factor-β (TGFβ). The increased SHIP then mediates, via inhibition of the phosphatidylinositol-3-kinase (PI3K) pathway, cytosine-phosphate-guanosine (CPG)– and LPS-induced tolerance and cross-tolerance and restrains IFN-β production induced by a subsequent exposure to LPS or dsRNA. Intriguingly, we found, using isoform-specific PI3K inhibitors, that LPS- or cytosine-phosphate-guanosine-induced interleukin-6 (IL-6) is positively regulated by p110α, -γ, and -δ but negatively regulated by p110β. This may explain some of the controversy concerning the role of PI3K in Toll-like receptor–induced cytokine production. Consistent with our in vitro findings, SHIP−/− mice overproduce IFN-β in response to LPS, and this leads to antiviral hypothermia. Thus, up-regulation of SHIP in response to Gram-negative bacterial infections probably explains the inability of such infections to protect against subsequent viral infections.