Published in

Public Library of Science, PLoS Neglected Tropical Diseases, 11(6), p. e1911, 2012

DOI: 10.1371/journal.pntd.0001911

Links

Tools

Export citation

Search in Google Scholar

Salivary Antigen SP32 Is the Immunodominant Target of the Antibody Response to Phlebotomus papatasi Bites in Humans

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Leishmania is transmitted by female sand flies and deposited during a blood meal together with saliva. Saliva contains a vast repertoire of pharmacologically active molecules that facilitate the acquisition of the blood meal and contribute to the establishment of the infection. These molecules can induce the production of anti-saliva antibodies, which can be used as markers of exposure to the vector bite. Epidemiological studies using sand fly salivary gland extract as antigens are hampered by the difficulty in obtaining large amounts of salivary glands. In the present study, we have investigated the use of recombinant salivary proteins from the Tunisian strain of Phlebotomus papatasi, the main vector of zoonotic cutaneous leishmaniasis (ZCL) in Tunisia, as an alternative method for screening of exposure to the sand fly bites. We primarily identified PpSP32 as the immunodominant protein and described the low level of polymorphisms in the amino acid sequence of the target protein. Further, we tested the suitability of using the recombinant form of this protein to estimate positive anti-saliva antibodies in serum samples of individuals from an endemic area for ZCL. Our findings indicate that this protein represents a promising epidemiological tool that can aid in implementing control measures against leishmaniasis.