Published in

Canadian Science Publishing, Biochemistry and Cell Biology, 5(89), p. 489-494, 2011

DOI: 10.1139/o11-040

Links

Tools

Export citation

Search in Google Scholar

The role of CTCF in coordinating the expression of single gene loci

Journal article published in 2011 by Austin E. Gillen ORCID, Ann Harris
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The CCCTC-binding factor (CTCF), which binds insulator elements in vertebrates, also facilitates coordinated gene expression at several gene clusters, including the β-globin, Igf2/H19 (insulin like growth factor 2/H19 noncoding RNA), and major histocompatibility complex (MHC) class II loci. CTCF controls expression of these genes both by enabling insulator function and facilitating higher order chromatin interactions. While the role of CTCF in gene regulation is best studied at these multi-gene loci, there is also evidence that CTCF contributes to the regulated expression of single genes. Here, we discuss how CTCF participates in coordinating gene expression at the CFTR (cystic fibrosis transmembrane conductance regulator) and IFNG (interferon-gamma) loci. We consider the structural similarities between the loci with regard to CTCF-binding elements, the possible interaction between nuclear receptors and CTCF, and the role of CTCF in chromatin looping at these genes. These comparisons reveal a functional model that may be applicable to other single-gene loci that require CTCF for coordinated gene expression.