Dissemin is shutting down on January 1st, 2025

Published in

American Astronomical Society, Astrophysical Journal, 1(657), p. 494-510, 2007

DOI: 10.1086/510148

Links

Tools

Export citation

Search in Google Scholar

Optical Spectroscopy of 2MASS Color-Selected Ultracool Subdwarfs

Journal article published in 2006 by Adam J. Burgasser, Kelle L. Cruz ORCID, J. Davy Kirkpatrick ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We present Gemini GMOS and Magellan LDSS-3 optical spectroscopy for seven ultracool subdwarf candidates color-selected from the Two Micron All Sky Survey. Five are identified as late-type subdwarfs, including the previously reported sdM9.5 SSSPM 1013-1356 and L subdwarf 2MASS 1626+3925, and a new sdM8.5 2MASS 0142+0523. 2MASS 1640+1231 exhibits spectral features intermediate between a late-type M dwarf and subdwarf, similar to the previously identified high proper motion star SSSPM 1444-2019, and we classify both sources as mild subdwarfs, d/sdM9. 2MASS 1227-0447 is a new ultracool extreme subdwarf, spectral type esdM7.5. Spectral model fits yield metallicities that are consistent with these metallicity classifications. Effective temperatures track with numerical subtype within a metallicity class, although they are not equivalent across metallicity classes. As a first attempt to delineate subtypes in the L subdwarf regime we classify 2MASS 1626+3925 and the previously identified 2MASS 0532+8246 as sdL4 and sdL7, respectively, to reflect their similarity to equivalently classified, solar metallicity L-type field dwarfs over the 7300-9000 A region. We also detail preliminary criteria for distinguishing L subdwarf optical spectra as a roadmap for defining this new spectral class. The strong TiO bands and Ca I and Ti I lines in the spectrum of 2MASS 1626+3925 provide further evidence that condensate formation may be inhibited in metal-deficient L subdwarfs. We conclude with a compendium of currently known, optically classified ultracool subdwarfs. ; Comment: 27 pages, 14 figures, 6 tables; accepted for publication to ApJ. Figures 2a-2e are included in PDF format in the source files