Published in

Mary Ann Liebert, Journal of Interferon and Cytokine Research, 6(31), p. 471-474, 2011

DOI: 10.1089/jir.2010.0043

Links

Tools

Export citation

Search in Google Scholar

Angiotensin II Type-2 Receptors Modulate Inflammation Through Signal Transducer and Activator of Transcription Proteins 3 Phosphorylation and TNFα Production

Journal article published in 2011 by Peter M. Abadir ORCID, Jeremy D. Walston, Robert M. Carey, Helmy M. Siragy
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Angiotensin subtype-1 receptor (AT(1)R) influences inflammatory processes through enhancing signal transducer and activator of transcription proteins 3 (STAT3) signal transduction, resulting in increased tumor necrosis factor-α (TNF-α) production. Although angiotensin subtype-2 receptor (AT(2)R), in general, antagonizes AT(1)R-stimulated activity, it is not known if AT(2)R has any anti-inflammatory effects. In this study, we tested the hypothesis that AT(2)R activation plays an anti-inflammatory role by reducing STAT3 phosphorylation and TNF-α production. Changes in AT(2)R expression, TNF-α production, and STAT3 phosphorylation were quantified by Western blotting, Bio-Plex cytokine, and phosphoprotein cellular signaling assays in PC12W cells that express AT(2)R but not AT(1)R, in response to the AT(2)R agonist, CGP-42112 (CGP, 100 nm), or AT(2)R antagonist PD-123319 (PD, 1 μm). A 100% increase in AT(2)R expression in response to stimulation with its agonist CGP was observed. Further, AT(2)R activation reduced TNF-α production by 39% and STAT3 phosphorylation by 83%. In contrast, PD decreased AT(2)R expression by 76%, increased TNF-α production by 84%, and increased STAT3 phosphorylation by 67%. These findings suggest that increased AT(2)R expression may play a role in the observed decrease in inflammatory pathway activation through decreased TNF-α production and STAT3 signaling. Restoration of AT(2)R expression and/or its activation constitute a potentially novel therapeutic target for the management of inflammatory processes.