Published in

American Society for Microbiology, Applied and Environmental Microbiology, 11(68), p. 5498-5507, 2002

DOI: 10.1128/aem.68.11.5498-5507.2002

Links

Tools

Export citation

Search in Google Scholar

Bacteria of the γ-subclass Proteobacteria associated with zooplankton in Chesapeake Bay

Journal article published in 2002 by J. F. Heidelberg, K. B. Heidelberg ORCID, R. R. Colwell
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT The seasonal abundance of γ-subclass Proteobacteria, Vibrio-Photobacterium, Vibrio cholerae-Vibrio mimicus, Vibrio cincinnatiensis, and Vibrio vulnificus in the Choptank River of Chesapeake Bay associated with zooplankton was monitored from April to December 1996. Large (>202-μm) and small (64- to 202-μm) size classes of zooplankton were collected, and the bacteria associated with each of the zooplankton size classes were enumerated by fluorescent oligonucleotide direct count. Large populations of bacteria were found to be associated with both the large and small size classes of zooplankton. Also, the species of bacteria associated with the zooplankton showed seasonal abundance, with the largest numbers occurring in the early spring and again in the summer, when zooplankton total numbers were correspondingly large. Approximately 0.01 to 40.0% of the total water column bacteria were associated with zooplankton, with the percentage of the total water column bacteria population associated with zooplankton varying by season. A taxonomically diverse group of bacteria was associated with zooplankton, and a larger proportion was found in and on zooplankton during the cooler months of the year, with selected taxa comprising a larger percent of the Bacteria in the summer. V. cholerae-V. mimicus and V. vulnificus comprised the bulk of the large and small zooplankton-associated Vibrio-Photobacterium species. In contrast, V. cincinnatiensis accounted for less than 0.1 to 3%. It is concluded that water column and zooplankton bacterial populations vary independently with respect to species composition since no correlation was observed between taxa occurring with highest frequency in the water column and those in association with zooplankton.