Published in

Soil Science Society of America, Vadose Zone Journal, 2(3), p. 352-367, 2004

DOI: 10.2113/3.2.352

Soil Science Society of America, Vadose Zone Journal, 2(3), p. 352

DOI: 10.2136/vzj2004.0352

Links

Tools

Export citation

Search in Google Scholar

Mobile Organic Sorbent Affected Contaminant Transport in Soil: Numerical Case Studies for Enhanced and Reduced Mobility

Journal article published in 2004 by Kai Uwe Totsche, Ingrid Kö Gel-Knabner ORCID
This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Mobile organic sorbents (MOS) such as dissolved and colloidal phase organic matter control flow of water and transport of solutes in soils. We studied the effect of MOS on contaminant fate by systematic numerical case studies. The scenarios considered were (i) enhanced mobility, (ii) reduced mobility due to cosorption, and (iii) reduced mobility due to cumulative sorption. The enhanced mobility and co-sorption scenario require contaminant sorption to the MOS. The cosorption and cumulative sorption scenario require sorption of MOS to the immobile sorbent. Simulations were run for physicochemically different fractions of dissolved organic matter and two model contaminants. Mobile organic sorbents mobility is characterized by a wide range of retardation parameters. Continued import of MOS to subsoil material high in MOS-specific sorption sites will increase the solid phase organic matter content. Enhanced mobility was observed for soils without MOS-specific sorption sites or for situations where MOS are in sorptive equilibrium with the immobile sorbent. Cosorption resultedin reduced contaminant mobility. The extent to which reduced mobility was observed depended on the ratio of the affinities of the free contaminant and the MOS-bound contaminant. As the sorption of the MOS-bound contaminants is controlled by the properties of the MOS, the characterization of these properties is a crucial step for the estimation of the effect of MOS on contaminant mobility. Cumulative sorption resulted in reduced contaminant mobility as well. However, this result is the consequence of the increase of the sorption capacity due to the sorption of MOS, a long-term process that may last for years to decades.