Published in

American Association for the Advancement of Science, Science, 5988(329), p. 207-210, 2010

DOI: 10.1126/science.1189373

Links

Tools

Export citation

Search in Google Scholar

Contrasting Decollement and Prism Properties over the Sumatra 2004-2005 Earthquake Rupture Boundary

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Quake Control Large earthquakes occur at the margins of two colliding plates, where one plate subducts beneath the other at a shallow angle. These megathrust earthquakes often cause destructive tsunamis owing to the displacement of large volumes of water at the fault along the plate boundary. Two related studies of the seismic structure of subduction zones attempt to reveal the underlying mechanisms of megathrust earthquakes (see the Perspective by Wang ). Kimura et al. (p. 210 ) compared seismic reflection images and microearthquake locations at the Philippine Sea plate where it subducts obliquely beneath Japan. The locations of repeating microearthquakes correspond to active transfer of material from the subducting plate to the continent—a process only previously assumed from exhumed metamorphic rocks. Dean et al. (p. 207 ) observe an expansive structure in the sea-floor sediment near the location of the 2004 and 2005 Sumatra earthquakes in Indonesia that suggests sediment properties may influence the magnitude of megathrust ruptures and their subsequent tsunamis.