Published in

SPE/EAGE European Unconventional Resources Conference and Exhibition

DOI: 10.2118/167692-ms

Links

Tools

Export citation

Search in Google Scholar

Optimizing Lateral Lengths in Horizontal Wells for a Heterogeneous Shale Play

Proceedings article published in 2014 by Larry Chorn, Neil Stegent, Jeffrey Yarus
This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Abstract A successful evaluation and development program in oil- and gas-bearing shales requires considerable analysis and investment, not to mention optimization to help ensure a profitable outcome. Accelerating optimization, reducing capital expenditures, and improving lifecycle net present value (NPV) for the asset are reasonable goals. Seven shale properties are key drivers to help achieve successful play economics. However, the heterogeneity of shales makes well location selection difficult without appraisal well logs and geostatistical mapping of shale property quality. The analysis method allows operators to quickly high-grade areas within a large, heterogeneous shale play using logging suites from a limited number of wellbores in the play. Further, the methodology has been extended to quantify the play's potential reward versus risk distribution for in-fill drilling investments. This study extends the method to optimizing lateral lengths of horizontal wells. Geostatistics provides a means to determine correlation lengths of aggregate shale properties known to be critical to successful economics. The correlation length is used to determine the appropriate length of the horizontal well lateral, restricting it within the highest rock quality for stimulation effectiveness and production rates. Because optimal lateral lengths can be predicted using this approach, it is now possible to pinpoint the best wellhead location, the best landing point for the horizontal portion of the well, and set the optimal length of the lateral. This reduces the drilling of unproductive lateral lengths and targets stimulations. By shortening the "trial-and-error" evaluation lifecycle stage using this methodology, an operator can develop an asset more quickly and at less cost than with previous approaches.