Published in

Materials Research Society, Materials Research Society Symposium Proceedings, (507), 1998

DOI: 10.1557/proc-507-571

Links

Tools

Export citation

Search in Google Scholar

Scanning Tunnelling Microscopy Study of the Growth Mechanism for Hydrogenated Amorphous Silicon Produced by Plasma Enhanced Chemical Vapour Deposition

Journal article published in 1998 by A. J. Flewitt ORCID, W. I. Milne, J. Robertson, A. W. Stephenson, M. E. Welland
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACTThin films of hydrogenated amorphous silicon (a-Si:H) have been deposited by plasma-enhanced chemical vapour deposition (PECVD), and the resulting topography measured in-situ on a nanometre scale using a scanning tunnelling microscope (STM). An island structure is observed on the surface of device quality a-Si:H, which can be quantitatively analysed using a one dimensional Fourier transform of the topography. Results suggest that deposition is limited by the creation of dangling bonds on the a-Si:H surface and not by the surface transport of SiH 3 radicals at the deposition temperature (598 K). Island nucleation takes place through the abstraction of hydrogen atoms from the a-Si:H surface by plasma etching and the subsequent attachment of an SiH 3 radicals to the available sites. A thermally activated hydrogen effusion process around the edge of each island, where the step edge causes a high local hydrogen concentration, then creates further dangling bonds which allow the islands to grow. A simulation has been constructed, which confirms this two stage mechanism.