Published in

Materials Research Society, Materials Research Society Symposium Proceedings, (439), 1996

DOI: 10.1557/proc-439-71

Materials Research Society, Materials Research Society Symposium Proceedings, (438), 1996

DOI: 10.1557/proc-438-53

Links

Tools

Export citation

Search in Google Scholar

Ion Beam Injected Point Defects in Crystalline Silicon: Migration, Interaction and Trapping Phenomena

Journal article published in 1996 by F. Priolo, V. Privitera, S. Coffa, S. Libertino ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractOur recent work on the room temperature migration and trapping phenomena of ion beam generated point defects in crystalline Si is reviewed. It is shown that a small fraction (˜10−6) of the defects generated at the surface by a shallow implant is injected into the bulk. These defects undergo a long range trap-limited diffusion and interact with both impurities, dopants and preexisting defects along their path. In particular, these interactions result in dopant deactivation and/or partial annihilation of pre-existing vacancy-type defect markers. It is found that in highly pure, epitaxial Si layers, these effects extend to several microns from the surface, demonstrating a long range migration of point defects at room temperature. By a detailed analysis of the experimental evidences we have identified the Si self-interstitials as the major responsible for the observed phenomena. This allowed us to give a lower limit of 6 × 10−11 cm2/s for the room temperature diffusion coefficient of the Si self-interstitials. Room temperature trap-limited migration of vacancies is also detected as a broadening in the divacancy profile of as implanted samples. In this case the room temperature diffusion coefficient of vacancies has been found to be ≥3 × 10−12 cm2/s. These data are presented and their implications discussed.