Dissemin is shutting down on January 1st, 2025

Published in

Materials Research Society, Materials Research Society Symposium Proceedings, (282), 1992

DOI: 10.1557/proc-282-683

Links

Tools

Export citation

Search in Google Scholar

Deposition Rate Monitoring using Laser Induced Fluorescence

Journal article published in 1992 by Timothy C. Reiley, Ernesto E. Marinero, Harris Notarys
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACTUltra thin films (< 10 nm) prepared using sputtering or other deposition techniques are becoming more technologically important, with promise of increased importance in the future, particularly in certain magnetic structures. For example, giant-magnetoresistive structures may incorporate individual layers having a thickness < 1 nm. Such a small thickness is commonly associated with relatively short deposition times (∼10 s) and may place limits on the reproducibility and accuracy of the conventional techniques for in situ thickness monitoring or integrated rate monitoring. Experiments have been performed to use laser induced fluorescence (LIF) as a rate monitoring technique for ultra thin films. An RF diode sputtering system was combined with a YAG-pumped, frequency-doubled dye laser to monitor the deposition rale of copper over a range of conditions. When coupled with an absolute calibration reference, the LIF signal gave a reproducible, well-behaved output over a range of pressure and temperature. The technique is potentially advantageous for depositions where rapid (∼1 s) measurements are needed. LIF is also projected to be a valuable tool for detecting very low deposition rates, and it offers the potential of sensitive, real time, spatially-resolved detection in time regimes extending to the nanosecond regime.