Dissemin is shutting down on January 1st, 2025

Published in

Materials Research Society, Materials Research Society Symposium Proceedings, (275), 1992

DOI: 10.1557/proc-275-589

Links

Tools

Export citation

Search in Google Scholar

Ultrafast Electrical Superconducting to Normal States Switching in Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O Microstrips

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACTSwitching from superconducting (S) to normal (N) state was investigated using short rise time (∼ 10−10 s) electric pulses in MBE grown Bi-Sr-Ca-Cu-O and rf magnetron sputtered Y-Ba-Cu-O submicron thickness microstrips. It was found that two reversible processes: fast electronic (τ∼10∼−12 s) and slow thermal (τ∼10∼−8s) one take place during switching. At high current densities (∼107 A/cm2) irreversible changes in strip material induced by thermal runaway occurred. The use of a superconducting element as fast fault-current limiter or pulse sharpening device is pointed out.