Published in

Materials Research Society, Materials Research Society Symposium Proceedings, (1165), 2009

DOI: 10.1557/proc-1165-m03-07

Links

Tools

Export citation

Search in Google Scholar

Chemical Composition and Electronic Properties of CuInS2/Zn(S,O) Interfaces

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractWe report on the chemical deposition and electronic properties of CuInS2/Zn(S,O) interfaces. The Zn(S,O) buffer was grown by a new chemical bath deposition (CBD) process that allows the tailoring of the S/O ratio in the films. Resulting Zn(S,O) films exhibit transparencies above 80% (for λ>390 nm) and an optical energy band gap of 3.9 eV which decreases to 3.6 eV after annealing in air at 200°C. Production line CuInS2 (CIS) absorbers provided by Sulfurcell Solartechnik GmbH are used as substrates for the investigation of the CIS/Zn(S,O) interface and the chemical composition of Zn(S,O). A ZnS/(ZnS+ZnO) ratio of 0.5 is found by X-ray photoelectron spectroscopy and X-ray excited Auger electron spectroscopy (XPS and XAES). The valence band offset between the heterojunction partners (ΔEV = 1.8 ± 0.2 eV) has been determined by means of XPS and ultraviolet photoelectron spectroscopy (UPS). Considering the energy band gap of the CIS absorber and the measured band gap of Zn(S,O), the conduction band offset (ΔEC) is calculated as: resulting in a spike of 0.5±0.3 eV in the conduction band at the heterojunction before annealing. After the heat treatment, the valence band offset is reduced to 1.5±0.2 eV and the calculated conduction band offset remains at 0.5±0.3 eV.