Published in

Materials Research Society, Materials Research Society Symposium Proceedings, (957), 2006

DOI: 10.1557/proc-0957-k01-05

Links

Tools

Export citation

Search in Google Scholar

Development of Thin Film and Nanorod ZnO-Based LEDs and Sensors

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACTThe development of new etching and contact metallurgies for the ZnO/ZnMgO/ZnCdO materials system and various approaches for realizing ZnO LEDs are reviewed. ZnO nanorod MOSFETs and pH sensors have been demonstrated. In addition, selective detection of hydrogen with Pt-coated single ZnO nanorods is discussed discussed. The Pt-coated single nanorods show a current response approximately a factor of three larger at room temperature upon exposure to 500ppm H2 in N2 than thin films of ZnO. The power consumption of these sensors can be very small (in the nW range) when using discontinuous coatings of Pt. Once the Pt coating becomes continuous, the current required to operate the sensors increases to the μW range. The ZnO nanorods are insensitive to oxygen in the measurement ambient.