Published in

Oxford University Press, Plant Physiology, 1(144), p. 495-502, 2007

DOI: 10.1104/pp.107.097048

Links

Tools

Export citation

Search in Google Scholar

GIGANTEA Regulates Phytochrome A-Mediated Photomorphogenesis Independently of Its Role in the Circadian Clock

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract GIGANTEA (GI) is a nuclear protein involved in the promotion of flowering by long days, in light input to the circadian clock, and in seedling photomorphogenesis under continuous red light but not far-red light (FR). Here, we report that in Arabidopsis (Arabidopsis thaliana) different alleles of gi have defects in the hypocotyl-growth and cotyledon-unfolding responses to hourly pulses of FR, a treatment perceived by phytochrome A (phyA). This phenotype is rescued by overexpression of GI. The very-low-fluence response of seed germination was also reduced in gi. Since the circadian clock modulates many light responses, we investigated whether these gi phenotypes were due to alterations in the circadian system or light signaling per se. In experiments where FR pulses were given to dark-incubated seeds or seedlings at different times of the day, gi showed reduced seed germination, cotyledon unfolding, and activity of a luciferase reporter fused to the promoter of a chlorophyll a/b-binding protein gene; however, rhythmic sensitivity was normal in these plants. We conclude that while GI does not affect the high-irradiance responses of phyA, it does affect phyA-mediated very-low-fluence responses via mechanisms that do not obviously involve its circadian functions.