Dissemin is shutting down on January 1st, 2025

Published in

Cell Press, Current Biology, 19(17), p. 1657-1662, 2007

DOI: 10.1016/j.cub.2007.08.041

Links

Tools

Export citation

Search in Google Scholar

ELYS/MEL-28 Chromatin Association Coordinates Nuclear Pore Complex Assembly and Replication Licensing

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Xenopus egg extract supports all the major cell-cycle transitions in vitro. We have used a proteomics approach to identify proteins whose abundance on chromatin changes during the course of an in vitro cell cycle. One of the proteins we identified was ELYS/MEL-28, which has recently been described as the earliest-acting factor known to be required for nuclear pore complex (NPC) assembly [1–4]. ELYS interacts with the Nup107-160 complex and is required for its association with chromatin. ELYS contains an AT-hook domain, which we show binds to chromatin with a high affinity. This domain can compete with full-length ELYS for chromatin association, thereby blocking NPC assembly. This provides evidence that ELYS interacts directly with chromatin and that this interaction is essential for NPC assembly and compartmentalization of chromosomal DNA within the cell. Furthermore, we detected a physical association on chromatin between ELYS and the Mcm2-7 replication-licensing proteins. ELYS chromatin loading, NPC assembly, and nuclear growth were delayed when Mcm2-7 was prevented from loading onto chromatin. Because nuclear assembly is required to shut down licensing prior to entry into S phase, our results suggest a mechanism by which these two early cell-cycle events are coordinated with one another.