Published in

De Gruyter, Zeitschrift für Naturforschung B, 9(53), p. 1021-1030, 1998

DOI: 10.1515/znb-1998-0914

Links

Tools

Export citation

Search in Google Scholar

Electron Donor-Acceptor Compounds. Synthesis and Structure of 5-(1,4-Benzoquinone-2-yl)-10,15,20-trialkylporphyrins

Journal article published in 1998 by Steffen Runge, Mathias O. Senge ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract A series of 5-(benzoquinone)-10,15,20-trialkylporphyrins was synthesized via cross condensation of the respective aldehydes, 2,5-dimethoxybenzaldehyde and pyrrole followed by demethylation with BBr3 and oxidation with PbO2. This method worked reasonably well for compounds bearing the benzoquinone substituent and butyl, isopropyl, 1 -methylpropyl and 2-ethylpropyl residues (2a-d). The free base porphyrin quinones were converted into the zinc(II) complexes (3a-d) all of which showed remarkable stability for porphyrin quinones. The zinc(II) complex 3c bearing isopropyl residues was investigated by X-ray crystallography and showed a supramolecular structure consisting of polymeric chains facilitated by coordina­tion of a benzoquinone oxygen to a neighboring zinc(II) center. Attempts to synthesize a 5-(benzoquinone)-10,15,20-tris(terr-butylporphyrin) resulted in the formation of a yellow porphomethene (4), which could not be oxidized further. A crystal structure analysis of 4, the first for a free base porphomethene, shows an extremely twisted conformation with syn-orientation of the three tert-butyl groups. The results indicate that new methods will have to be developed for the synthesis of nonplanar porphyrin quinones.