Published in

ECS Meeting Abstracts, 11(MA2012-01), p. 594-594, 2012

DOI: 10.1149/ma2012-01/11/594

Links

Tools

Export citation

Search in Google Scholar

Direct Dimethyl Ether Fuel Cell with Much Improved Performance

Journal article published in 2014 by Qing Li ORCID, Gang Wu, Yu Seung Kim, Christina M. Johnston, Piotr Zelenay
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Due to several apparent advantages over methanol, dimethyl ether (DME) has been viewed as a promising alternative fuel for direct fuel cell technology. Similar to methanol, DME oxidation requires a surface oxidant, such as OH, for the removal of adsorbed CO. Consequently, the reaction occurs at much faster rates on binary PtRu catalysts than Pt alone. In this work, PtRu catalysts with a wide variety of Pt-to-Ru ratios were systematically studied in the direct DME fuel cell (DDMEFC) operating at 80 °C. A Pt50Ru50 catalyst was found to perform the best at high and middle voltages, while a Pt80Ru20 catalyst performed best at low voltages. DDMEFC operation conditions, such as DME flow rate, anode back pressure, DME-to-water molar ratio, and membrane thickness, were also studied in order to maximize the cell performance. A maximum power density of 0.12 W cm−2 obtained in this work exceeds the highest reported DME performance. In comparison with the direct methanol fuel cell (DMFC), the optimized DDMEFC performs better at cell voltages higher than 0.55 and 0.49 V with feed concentrations of methanol of 0.5 and 1.0 M, respectively.