Links

Tools

Export citation

Search in Google Scholar

Cyclosporine a enhances gingival beta-catenin stability via wnt signaling ; Cyclosporine a enhances gingival β-catenin stability via wnt signaling

Journal article published in 2015 by HP;Chen YT;Fu E;Shen EC;Wu MH;Chen YL;Chiang CY;Chiu HC Tu
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Cyclosporine A (CsA) increases β-catenin messenger RNA (mRNA) and protein expression. The present study demonstrates that Wnt/β-catenin signaling inhibits β-catenin degradation in the gingiva. Methods: Forty 5-week-old male Sprague-Dawley rats were assigned to two study groups after healing from right maxillary molar extractions. The rats in the experimental group were fed 30 mg/kg CsA daily for 4 weeks, whereas the control rats were fed mineral oil. At the end of the study, all rats were sacrificed, and the gingivae were obtained. The gingival morphology after CsA treatment was evaluated by histology, and the genes related to Wnt/β-catenin signaling were initially screened by microarray. Polymerase chain reaction, Western blotting, and immunohistochemistry were used to examine the mRNA and protein expression of proliferating cell nuclear antigen, cyclin D1, E-cadherin, β-catenin, Dvl-1, glycogen synthase kinase-3β, axin-1, and adenomatous polyposis coli (APC). Phosphoserine and ubiquitinylated β-catenin were detected after immunoprecipitation. Results: In rats treated with CsA, overgrowth of gingivae was observed, and altered expression of genes related to Wnt/β-catenin signaling was detected by the microarray. The gingival mRNA and protein expression profiles for genes associated with Wnt/β-catenin signaling further confirmed the effect of CsA: β-catenin and Dvl-1 expression increased, but APC and axin-1 expression decreased. Western blotting and immunohistochemistry showed decreases in β-catenin serine phosphorylation (33/37) and ubiquitinylation in the gingivae of CsA-treated rats. Conclusion: CsA-enhanced gingival β-catenin stability may be involved in gene upregulation or β-catenin degradation via the Wnt/β-catenin pathway.