Published in

Springer Verlag, Magnetic Resonance Materials in Physics, Biology and Medicine, 2(26), p. 239-247

DOI: 10.1007/s10334-012-0333-8

Links

Tools

Export citation

Search in Google Scholar

Combination of tagging and tissue phase mapping to accelerate myocardial motion measurements in three directions

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Object Until now, a three-directional velocity field has mostly been obtained by velocity encoding in three directions, which is very time-consuming and hence not usually used in clinical routine. We show the feasibility of combining in-plane tagging with through-plane tissue phase mapping (TPM) to encode a three-directional velocity field at 3 T with reduced overall acquisition time. Materials and methods Assessment of a three-directional velocity field was performed for 10 healthy volunteers. The motion patterns obtained by use of five different sequences including three-directional TPM, TPM in the through-plane direction, TPM in the through-plane direction with horizontal or vertical tagging lines, and TPM in the through-plane direction combined with a tagging grid were evaluated and compared. Results A three-dimensional velocity field can be obtained in approximately half the acquisition time by combining through-plane TPM with in-plane tagging. Although the velocity information is derived by different means, differences between the information obtained by three-directional TPM encoding and the suggested technique are only minor. Conclusion The combination of tagging and TPM enables assessment of the three-directional velocity field in nearly half the time taken when the conventional three-directional TPM sequence is used.