Dissemin is shutting down on January 1st, 2025

Published in

Microbiology Society, Microbiology, 7(158), p. 1884-1896, 2012

DOI: 10.1099/mic.0.059618-0

Links

Tools

Export citation

Search in Google Scholar

Needle length control and the secretion substrate specificity switch are only loosely coupled in the type III secretion apparatus of Shigella

Journal article published in 2012 by Da-Kang Shen, Nao Moriya, Isabel Martinez-Argudo ORCID, Ariel J. Blocker
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The type III secretion apparatus (T3SA), which is evolutionarily and structurally related to the bacterial flagellar hook basal body, is a key virulence factor used by many gram-negative bacteria to inject effector proteins into host cells. A hollow extracellular needle forms the injection conduit of the T3SA. Its length is tightly controlled to match specific structures at the bacterial and host-cell surfaces but how this occurs remains incompletely understood. The needle is topped by a tip complex, which senses the host cell and inserts as a translocation pore in the host membrane when secretion is activated. The interaction of two conserved proteins, inner-membrane Spa40 and secreted Spa32, respectively, in Shigella, is proposed to regulate needle length and to flick a type III secretion substrate specificity switch from needle components/Spa32 to translocator/effector substrates. We found that, as in T3SAs from other species, substitution N257A within the conserved cytoplasmic NPTH region in Spa40 prevented its autocleavage and substrate specificity switching. Yet, the spa40(N257A) mutant made only slightly longer needles with a few needle tip complexes, although it could not form translocation pores. On the other hand, Δspa32, which makes extremely long needles and also formed only few tip complexes, could still form some translocation pores, indicating that it could switch substrate specificity to some extent. Therefore, loss of needle length control and defects in secretion specificity switching are not tightly coupled in either a Δspa32 mutant or a spa40(N257A) mutant.