Published in

Public Library of Science, PLoS ONE, 4(7), p. e34645, 2012

DOI: 10.1371/journal.pone.0034645

Links

Tools

Export citation

Search in Google Scholar

Zfp296 Is a Novel, Pluripotent-Specific Reprogramming Factor

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Expression of the four transcription factors Oct4, Sox2, Klf4, and c-Myc (OSKM) is sufficient to reprogram somatic cells into induced pluripotent stem (iPSCs). However, this process is slow and inefficient compared with the fusion of somatic cells with embryonic stem cells (ESCs), indicating that ESCs express additional factors that can enhance the efficiency of reprogramming. We had previously developed a method to detect and isolate early neural induction intermediates during the differentiation of mouse ESCs. Using the gene expression profiles of these intermediates, we identified 23 ESC-specific transcripts and tested each for the ability to enhance iPSC formation. Of the tested factors, zinc finger protein 296 (Zfp296) led to the largest increase in mouse iPSC formation. We confirmed that Zfp296 was specifically expressed in pluripotent stem cells and germ cells. Zfp296 in combination with OSKM induced iPSC formation earlier and more efficiently than OSKM alone. Through mouse chimera and teratoma formation, we demonstrated that the resultant iPSCs were pluripotent. We showed that Zfp296 activates transcription of the Oct4 gene via the germ cell–specific conserved region 4 (CR4), and when overexpressed in mouse ESCs leads to upregulation of Nanog expression and downregulation of the expression of differentiation markers, including Sox17, Eomes, and T, which is consistent with the observation that Zfp296 enhances the efficiency of reprogramming. In contrast, knockdown of Zfp296 in ESCs leads to the expression of differentiation markers. Finally, we demonstrated that expression of Zfp296 in ESCs inhibits, but does not block, differentiation into neural cells.