Published in

Public Library of Science, PLoS ONE, 3(8), p. e58241, 2013

DOI: 10.1371/journal.pone.0058241

Links

Tools

Export citation

Search in Google Scholar

Allometric Convergence in Savanna Trees and Implications for the Use of Plant Scaling Models in Variable Ecosystems

Journal article published in 2013 by Andrew T. Tredennick ORCID, Lisa Patrick Bentley, Niall P. Hanan
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Theoretical models of allometric scaling provide frameworks for understanding and predicting how and why the morphology and function of organisms vary with scale. It remains unclear, however, if the predictions of ‘universal’ scaling models for vascular plants hold across diverse species in variable environments. Phenomena such as competition and disturbance may drive allometric scaling relationships away from theoretical predictions based on an optimized tree. Here, we use a hierarchical Bayesian approach to calculate tree-specific, species-specific, and ‘global’ (i.e. interspecific) scaling exponents for several allometric relationships using tree- and branch-level data harvested from three savanna sites across a rainfall gradient in Mali, West Africa. We use these exponents to provide a rigorous test of three plant scaling models (Metabolic Scaling Theory (MST), Geometric Similarity, and Stress Similarity) in savanna systems. For the allometric relationships we evaluated (diameter vs. length, aboveground mass, stem mass, and leaf mass) the empirically calculated exponents broadly overlapped among species from diverse environments, except for the scaling exponents for length, which increased with tree cover and density. When we compare empirical scaling exponents to the theoretical predictions from the three models we find MST predictions are most consistent with our observed allometries. In those situations where observations are inconsistent with MST we find that departure from theory corresponds with expected tradeoffs related to disturbance and competitive interactions. We hypothesize savanna trees have greater length-scaling exponents than predicted by MST due to an evolutionary tradeoff between fire escape and optimization of mechanical stability and internal resource transport. Future research on the drivers of systematic allometric variation could reconcile the differences between observed scaling relationships in variable ecosystems and those predicted by ideal models such as MST.