Published in

The Company of Biologists, Journal of Cell Science, 22(121), p. 3770-3777, 2008

DOI: 10.1242/jcs.029785

Links

Tools

Export citation

Search in Google Scholar

Regulation of PLCβ1a membrane anchoring by its substrate phosphatidylinositol (4,5)-bisphosphate

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Basic knowledge as to the subcellular location and dynamics of PLCβ isozymes is scant. Here, we report on the subcellular location of GFP-PLCβ1a and the use of total internal reflection fluorescence (TIRF) microscopy to examine the dynamics of GFP-PLCβ1a at the plasma membrane upon stimulation of Gq-coupled receptors. Using this technique, we observed PLCβ1a dissociation from the plasma membrane upon addition of agonist. An increase in intracellular calcium and a decrease in PtdIns(4,5)P2 both coincided with a translocation of PLCβ1a from the plasma membrane into the cytosol. In order to differentiate between calcium and PtdIns(4,5)P2, rapamycin-induced heterodimerization of FRB and FKBP12 fused to 5-phosphatase IV was used to instantaneously convert PtdIns(4,5)P2 into PtdIns(4)P. Addition of rapamycin caused PLCβ1a to dissociate from the plasma membrane, indicating that removal of PtdIns(4,5)P2 is sufficient to cause translocation of PLCβ1a from the plasma membrane. In conclusion, PLCβ1a localization is regulated by its own substrate.