Published in

2012 IEEE Conference on Computer Vision and Pattern Recognition

DOI: 10.1109/cvpr.2012.6247765

Links

Tools

Export citation

Search in Google Scholar

Spatial bias in multi-atlas based segmentation

Journal article published in 2012 by Hongzhi Wang, P. A. Yushkevich ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Multi-atlas segmentation has been widely applied in medical image analysis. With deformable registration, this technique realizes label transfer from pre-labeled atlases to unknown images. When deformable registration produces error, label fusion that combines results produced by multiple atlases is an effective way for reducing segmentation errors. Among the existing label fusion strategies, similarity-weighted voting strategies with spatially varying weight distributions have been particularly successful. We show that, weighted voting based label fusion produces a spatial bias that under-segments structures with convex shapes. The bias can be approximated as applying spatial convolution to the ground truth spatial label probability maps, where the convolution kernel combines the distribution of residual registration errors and the function producing similarity-based voting weights. To reduce this bias, we apply a standard spatial deconvolution to the spatial probability maps obtained from weighted voting. In a brain image segmentation experiment, we demonstrate the spatial bias and show that our technique substantially reduces this spatial bias.