Published in

Lippincott, Williams & Wilkins, Anesthesiology, 1(98), p. 189-194, 2003

DOI: 10.1097/00000542-200301000-00029

Links

Tools

Export citation

Search in Google Scholar

Comparison of the Visceral Antinociceptive Effects of Spinally Administered MPV-2426 (Fadolmidine) and Clonidine in the Rat:

Journal article published in 2003 by Antti Pertovaara ORCID, Jaakko Kalmari
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Background The authors determined the visceral antinociceptive effect induced by MPV-2426 (fadolmidine), a selective alpha 2 -adrenoceptor agonist, in rats with and without inflammation of the colon. They also determined whether the sympathetic nervous system or intact descending pathways are critical for the alpha 2 -adrenoceptor-induced visceral antinociception. Methods Spinal neuronal responses evoked by colorectal distension were recorded in pentobarbitone-anesthetized rats. MPV-2426 was administered onto the spinal cord. Clonidine was used as a reference alpha 2 -adrenoceptor agonist. Inflammation of the colon was induced by turpentine. Sympathectomy was induced by 6-hydroxydopamine. A midthoracic transection of the spinal cord was performed to study the role of descending pathways. Results Spinal administration of MPV-2426 produced a dose-dependent attenuation of responses evoked by colorectal distension, and this effect was of the same percentual magnitude in inflamed as in noninflamed animals. Clonidine and MPV-2426 induced equipotent visceral antinociception. The effect by spinally administered MPV-2426 was enhanced by a chemical sympathectomy but not influenced by spinal transection. Conclusions Spinally administered MPV-2426 produces a dose-dependent visceral antinociception as well in animals with an inflammation of the colon as in controls. The visceral antinociceptive effect induced by spinal MPV-2426 is equipotent to that of spinal clonidine. An intact sympathetic nervous system or intact brainstem-spinal pathway is not critical for the MPV-2426-induced visceral antinociception.