Published in

American Chemical Society, Journal of Organic Chemistry, 5(74), p. 2120-2133, 2009

DOI: 10.1021/jo8027104

Links

Tools

Export citation

Search in Google Scholar

A Combined Experimental and Theoretical Study of the Polar [3 + 2] Cycloaddition of Electrophilically Activated Carbonyl Ylides with Aldehydes and Imines

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Numerous 2,5-diaryl-1,3-dioxolane-4,4-dicarbonitriles and 2,4-diphenyl-1,3-oxazolidine-5,5-dicarbonitriles have been synthesized by [3 + 2] cycloaddition reactions between carbonyl ylides generated from epoxides and aldehydes or imines. In contrast to the use of aldehydes (3,4,5-trimethoxybenzaldehyde, piperonal, 1-naphthaldehyde, indole-3-carboxaldehyde, furan-2-carboxaldehyde, and thiophene-2-carboxaldehyde), the reactions performed with imines (N-(phenylmethylene)methanamine, N-(1,3-benzodioxol-5-ylmethylene)propylamine, N-(1,3-benzodioxol-5-ylmethylene)butylamine, and N-(1,3-benzodioxol-5-ylmethylene)benzylamine) proceed diastereoselectively. The effect of microwave irradiation on the outcome of the reaction was studied. The mechanism of these [3 + 2] cycloaddition reactions has been theoretically investigated using DFT methods. These cycloadditions, which have one-step mechanisms, consist of the nucleophilic attack of the aldehyde oxygen or imine nitrogen on the carbonyl ylide. For the reaction with aldehydes, a back-donation effect is responsible for the unexpected reverse charge transfer found at the transition structure. The analysis of the reactivity indexes indicates that the large electrophilic character of the carbonyl ylides induces them to act as strong electrophiles in these polar [3 + 2] cycloaddition reactions.